|
class | EnquistOsher |
| Engquist osher integration scheme based on the upwind integration scheme. Offers high performance but lower accuracy for complex velocity fields. More...
|
|
class | FiniteDifferences |
|
class | Graph |
|
class | LaxFriedrichs |
| Lax Friedrichs integration scheme with constant alpha value for dissipation. This alpha value should be fitted based on the results of the advection and passed to the advection Kernel. More...
|
|
class | LocalLaxFriedrichs |
| Lax Friedrichs integration scheme, which uses a first neighbour stencil to calculate the alpha values for all neighbours. The largest alpha value is then chosen for dissipation. Slower than lsLocalLocalLaxFriedrichs or lsEngquistOsher but more reliable for complex velocity fields. More...
|
|
class | LocalLaxFriedrichsAnalytical |
| Lax Friedrichs integration scheme, which uses alpha values provided by the user in getDissipationAlphas in lsVelocityField. If it is possible to derive analytical solutions for the velocityField and the alpha values, this integration scheme should be used and never otherwise. More...
|
|
class | LocalLocalLaxFriedrichs |
| Lax Friedrichs integration scheme, which considers only the current point for alpha calculation. Faster than lsLocalLaxFriedrichs but not as accurate. More...
|
|
class | MarchingCubes |
| Helper class for lsToSurfaceMesh. Should not be used directly. More...
|
|
class | StencilLocalLaxFriedrichsScalar |
| Stencil Local Lax Friedrichs Integration Scheme. It uses a stencil of order around active points, in order to evaluate dissipation values for each point, taking into account the mathematical nature of the speed function. see Toifl et al., 2019. ISBN: 978-1-7281-0938-1; DOI: 10.1109/SISPAD.2019.8870443. More...
|
|
|
template<class It > |
double | squareSumSquare (It begin, It end) |
| Returns the squared sum square for values in the range [start, end[.
|
|
template<class It > |
double | rootSumSquarePow3 (It begin, It end) |
| Returns the root sum square to the 3rd power for values in the range [start, end[.
|
|
template<class T , std::size_t N> |
double | meanCurvature2D (std::array< T, N > funcValues) |
| Mean curvature formula for implicit surfaces in 2D, the passed array should contain the function values in the following order: (F_x, F_y, F_z, F_xx, F_yy, F_zz, F_xy, F_yz, F_zx)
|
|
template<class T , std::size_t N> |
double | meanCurvature3D (std::array< T, N > funcValues) |
| Mean curvature formula for implicit surfaces in 3D, the passed array should contain the function values in the following order: (F_x, F_y, F_z, F_xx, F_yy, F_zz, F_xy, F_yz, F_zx)
|
|
template<class T , std::size_t N> |
double | gaussianCurvature3D (std::array< T, N > funcValues) |
| Gaussian curvature formula for implicit surfaces in 3D, the passed array should contain the function values in the following order: (F_x, F_y, F_z, F_xx, F_yy, F_zz, F_xy, F_yz, F_zx)
|
|
template<class It , class T = typename It::DomainType::hrleValueType> |
std::array< T, 9 > | smallStencilFromIterator (It &it, const double gridDelta) |
| Fills an std::array with differential values calculated from neighbour values. This stencil only uses direct neighbours for fast calculation of the differentials.
|
|
template<class It , class T = typename It::DomainType::hrleValueType> |
std::array< T, 9 > | bigStencilFromIterator (It &it, const double gridDelta) |
| Fills an std::array with differential values calculated from neighbour values. This stencil also uses diagonal neighbours to achieve a higher accuracy.
|
|
template<class It , class T = typename It::DomainType::hrleValueType> |
T | meanCurvature (It &it, bool bigStencil=false) |
| Calculates the Mean Curvature of the level set function from a suitable hrle iterator. Requires an iterator that is big enough to calculate second order derivatives(e.g. hrleBoxIterator or hrleCartesianPlaneIterator)
|
|
template<class It , class T = typename It::DomainType::hrleValueType> |
T | gaussianCurvature (It &it, bool bigStencil=false) |
| Calculates the Gaussian Curvature of the level set function from a suitable hrle iterator. Requires an iterator that is big enough to calculate second order derivatives(e.g. hrleBoxIterator or hrleCartesianPlaneIterator)
|
|
template<class
T , std::size_t N>
double lsInternal::gaussianCurvature3D |
( |
std::array< T, N > | funcValues | ) |
|
Gaussian curvature formula for implicit surfaces in 3D, the passed array should contain the function values in the following order: (F_x, F_y, F_z, F_xx, F_yy, F_zz, F_xy, F_yz, F_zx)
template<class
T , std::size_t N>
double lsInternal::meanCurvature2D |
( |
std::array< T, N > | funcValues | ) |
|
Mean curvature formula for implicit surfaces in 2D, the passed array should contain the function values in the following order: (F_x, F_y, F_z, F_xx, F_yy, F_zz, F_xy, F_yz, F_zx)
template<class
T , std::size_t N>
double lsInternal::meanCurvature3D |
( |
std::array< T, N > | funcValues | ) |
|
Mean curvature formula for implicit surfaces in 3D, the passed array should contain the function values in the following order: (F_x, F_y, F_z, F_xx, F_yy, F_zz, F_xy, F_yz, F_zx)