ViennaLS
Loading...
Searching...
No Matches
lsInternal::StencilLocalLaxFriedrichsScalar< T, D, order, finiteDifferenceScheme > Class Template Reference

Stencil Local Lax Friedrichs Integration Scheme. It uses a stencil of order around active points, in order to evaluate dissipation values for each point, taking into account the mathematical nature of the speed function. see Toifl et al., 2019. ISBN: 978-1-7281-0938-1; DOI: 10.1109/SISPAD.2019.8870443. More...

#include <lsStencilLocalLaxFriedrichsScalar.hpp>

Public Member Functions

 StencilLocalLaxFriedrichsScalar (LevelSetType passedlsDomain, SmartPointer< viennals::VelocityField< T > > vel, double a=1.0)
 
std::pair< T, Toperator() (const viennahrle::Index< D > &indices, int material)
 
void reduceTimeStepHamiltonJacobi (double &MaxTimeStep, double gridDelta) const
 

Static Public Member Functions

static void prepareLS (LevelSetType passedlsDomain)
 

Detailed Description

template<class T, int D, int order, DifferentiationSchemeEnum finiteDifferenceScheme = DifferentiationSchemeEnum::FIRST_ORDER>
class lsInternal::StencilLocalLaxFriedrichsScalar< T, D, order, finiteDifferenceScheme >

Stencil Local Lax Friedrichs Integration Scheme. It uses a stencil of order around active points, in order to evaluate dissipation values for each point, taking into account the mathematical nature of the speed function. see Toifl et al., 2019. ISBN: 978-1-7281-0938-1; DOI: 10.1109/SISPAD.2019.8870443.

Constructor & Destructor Documentation

◆ StencilLocalLaxFriedrichsScalar()

template<class T, int D, int order, DifferentiationSchemeEnum finiteDifferenceScheme = DifferentiationSchemeEnum::FIRST_ORDER>
lsInternal::StencilLocalLaxFriedrichsScalar< T, D, order, finiteDifferenceScheme >::StencilLocalLaxFriedrichsScalar ( LevelSetType passedlsDomain,
SmartPointer< viennals::VelocityField< T > > vel,
double a = 1.0 )
inline

Member Function Documentation

◆ operator()()

template<class T, int D, int order, DifferentiationSchemeEnum finiteDifferenceScheme = DifferentiationSchemeEnum::FIRST_ORDER>
std::pair< T, T > lsInternal::StencilLocalLaxFriedrichsScalar< T, D, order, finiteDifferenceScheme >::operator() ( const viennahrle::Index< D > & indices,
int material )
inline

◆ prepareLS()

template<class T, int D, int order, DifferentiationSchemeEnum finiteDifferenceScheme = DifferentiationSchemeEnum::FIRST_ORDER>
static void lsInternal::StencilLocalLaxFriedrichsScalar< T, D, order, finiteDifferenceScheme >::prepareLS ( LevelSetType passedlsDomain)
inlinestatic

◆ reduceTimeStepHamiltonJacobi()

template<class T, int D, int order, DifferentiationSchemeEnum finiteDifferenceScheme = DifferentiationSchemeEnum::FIRST_ORDER>
void lsInternal::StencilLocalLaxFriedrichsScalar< T, D, order, finiteDifferenceScheme >::reduceTimeStepHamiltonJacobi ( double & MaxTimeStep,
double gridDelta ) const
inline

The documentation for this class was generated from the following file: