ViennaLS
Loading...
Searching...
No Matches
lsInternal::WENO< T, D, order > Class Template Reference

Weighted Essentially Non-Oscillatory (WENO) scheme. This kernel acts as the grid-interface for the mathematical logic defined in lsFiniteDifferences.hpp. More...

#include <lsWENO.hpp>

Public Member Functions

 WENO (SmartPointer< viennals::Domain< T, D > > passedlsDomain, SmartPointer< viennals::VelocityField< T > > vel, bool calcNormal=true)
std::pair< T, Toperator() (const viennahrle::Index< D > &indices, int material)
void reduceTimeStepHamiltonJacobi (double &MaxTimeStep, double gridDelta) const

Static Public Member Functions

static void prepareLS (SmartPointer< viennals::Domain< T, D > > passedlsDomain)

Detailed Description

template<class T, int D, int order>
class lsInternal::WENO< T, D, order >

Weighted Essentially Non-Oscillatory (WENO) scheme. This kernel acts as the grid-interface for the mathematical logic defined in lsFiniteDifferences.hpp.

Constructor & Destructor Documentation

◆ WENO()

template<class T, int D, int order>
lsInternal::WENO< T, D, order >::WENO ( SmartPointer< viennals::Domain< T, D > > passedlsDomain,
SmartPointer< viennals::VelocityField< T > > vel,
bool calcNormal = true )
inline

Member Function Documentation

◆ operator()()

template<class T, int D, int order>
std::pair< T, T > lsInternal::WENO< T, D, order >::operator() ( const viennahrle::Index< D > & indices,
int material )
inline

◆ prepareLS()

template<class T, int D, int order>
void lsInternal::WENO< T, D, order >::prepareLS ( SmartPointer< viennals::Domain< T, D > > passedlsDomain)
inlinestatic

◆ reduceTimeStepHamiltonJacobi()

template<class T, int D, int order>
void lsInternal::WENO< T, D, order >::reduceTimeStepHamiltonJacobi ( double & MaxTimeStep,
double gridDelta ) const
inline

The documentation for this class was generated from the following file: